Skip to contents

provides hybrid data structure for 'fst' file

Value

none

none

none

vector, dimensions

subset of data

Author

Zhengjia Wang

Methods


Method open()

to be compatible with LazyH5

Usage

LazyFST$open(...)

Arguments

...

ignored


Method close()

close the connection

Usage

LazyFST$close(..., .remove_file = FALSE)

Arguments

...

ignored

.remove_file

whether to remove the file when garbage collected


Method save()

to be compatible with LazyH5

Usage

LazyFST$save(...)

Arguments

...

ignored


Method new()

constructor

Usage

LazyFST$new(file_path, transpose = FALSE, dims = NULL, ...)

Arguments

file_path

where the data is stored

transpose

whether to load data transposed

dims

data dimension, only support 1 or 2 dimensions

...

ignored


Method get_dims()

get data dimension

Usage

LazyFST$get_dims(...)

Arguments

...

ignored


Method subset()

subset data

Usage

LazyFST$subset(i = NULL, j = NULL, ..., drop = TRUE)

Arguments

i, j, ...

index along each dimension

drop

whether to apply drop the subset

Examples


if(!is_on_cran()){

# Data to save, total 8 MB
x <- matrix(rnorm(1000000), ncol = 100)

# Save to local disk
f <- tempfile()
fst::write_fst(as.data.frame(x), path = f)

# Load via LazyFST
dat <- LazyFST$new(file_path = f, dims = c(10000, 100))

# dat < 1 MB

# Check whether the data is identical
range(dat[] - x)

# The reading of column is very fast
system.time(dat[,100])

# Reading rows might be slow
system.time(dat[1,])

}
#> NOT_CRAN is TRUE/true (not on CRAN)
#>    user  system elapsed 
#>   0.003   0.003   0.006